Skip to main content

Procedural Training Simulators

  • Chapter
  • First Online:
Practical Simulation in Urology

Abstract

Simulation-based training nowadays constitutes a large part of the procedural learning curve and can be acquired using training models. Procedural training simulators imitate some aspect of human anatomy or surgical step, facilitating a learning activity through simulation of characteristics of that anatomy or step. Applying surgical simulators offers various advantages like tailored training, convenient programming, and maintaining patient safety. Urologists have benefitted by applying procedural training simulators in open urology, endourology, laparoscopic and robot-assisted urology. Different modalities include synthetic, animal tissue, live animal, 3D printed models, VR and AR simulators, human cadavers, and full immersion simulation. Fidelity, validity, and reliability are key characteristics of simulators. This chapter gives an overview of different types of models/simulators applied in the field of Urology. We will also provide additional information about advantages and disadvantages and valuable tips to choose the most appropriate simulator to achieve the best possible training outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HoLEP:

Holmium Laser Enucleation of the Prostate

PCNL:

Percutaneous Nephrolithotomy

TURBT:

Transurethral Resection of the Bladder Tumor

TURP:

Transurethral Resection of the Prostate

References

  1. Coxon JP, Pattison SH, Parks JW, Stevenson PK, Kirby RS. Reducing human error in urology: lessons from aviation. BJU Int. 2003;91(1):1–3. https://doi.org/10.1046/j.1464-410x.2003.04003.x.

    Article  CAS  PubMed  Google Scholar 

  2. McGreevy JM. The aviation paradigm and surgical education. J Am Coll Surg. 2005;201(1):110–7. https://doi.org/10.1016/j.jamcollsurg.2005.02.024.

    Article  PubMed  Google Scholar 

  3. Cameron JL. William Stewart Halsted. Our surgical heritage. Ann Surg. 1997;225(5):445–58. https://doi.org/10.1097/00000658-199705000-00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reznick RK, MacRae H. Teaching surgical skills – changes in the wind. N Engl J Med. 2006;355(25):2664–9. https://doi.org/10.1056/NEJMra054785.

    Article  CAS  PubMed  Google Scholar 

  5. Lanier J, Biocca F. An insider’s view of the future of virtual reality. J Commun. 1992;42(4):150–72. https://doi.org/10.1111/j.1460-2466.1992.tb00816.x.

    Article  Google Scholar 

  6. Schout BM, Hendrikx AJ, Scherpbier AJ, Bemelmans BL. Update on training models in endourology: a qualitative systematic review of the literature between January 1980 and April 2008. Eur Urol. 2008;54(6):1247–61. https://doi.org/10.1016/j.eururo.2008.06.036.

    Article  PubMed  Google Scholar 

  7. Somani BK, Van Cleynenbreugel B, Gözen AS, Skolarikos A, Wagner C, Beatty J, et al. Outcomes of European Basic Laparoscopic Urological Skills (EBLUS) Examinations: Results from European School of Urology (ESU) and EAU Section of Uro-Technology (ESUT) over 6 years (2013-2018). Eur Urol Focus. 2020;6(6):1190–4. https://doi.org/10.1016/j.euf.2019.01.007.

    Article  PubMed  Google Scholar 

  8. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69(6):1065–80. https://doi.org/10.1016/j.eururo.2015.09.021.

    Article  PubMed  Google Scholar 

  9. Aydin A, Raison N, Khan MS, Dasgupta P, Ahmed K. Simulation-based training and assessment in urological surgery. Nat Rev Urol. 2016;13(9):503–19. https://doi.org/10.1038/nrurol.2016.147.

    Article  PubMed  Google Scholar 

  10. Maran NJ, Glavin RJ. Low- to high-fidelity simulation - a continuum of medical education? Med Educ. 2003;37(Suppl 1):22–8. https://doi.org/10.1046/j.1365-2923.37.s1.9.x.

    Article  PubMed  Google Scholar 

  11. Grober ED, Hamstra SJ, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu RS, et al. The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. Ann Surg. 2004;240(2):374–81. https://doi.org/10.1097/01.sla.0000133346.07434.30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McDougall EM. Validation of surgical simulators. J Endourol. 2007;21(3):244–7. https://doi.org/10.1089/end.2007.9985.

    Article  PubMed  Google Scholar 

  13. Van Nortwick SS, Lendvay TS, Jensen AR, Wright AS, Horvath KD, Kim S. Methodologies for establishing validity in surgical simulation studies. Surgery. 2010;147(5):622–30. https://doi.org/10.1016/j.surg.2009.10.068.

    Article  PubMed  Google Scholar 

  14. Korndorffer JR Jr, Kasten SJ, Downing SM. A call for the utilization of consensus standards in the surgical education literature. Am J Surg. 2010;199(1):99–104. https://doi.org/10.1016/j.amjsurg.2009.08.018.

    Article  PubMed  Google Scholar 

  15. Sweet RM, Hananel D, Lawrenz F. A unified approach to validation, reliability, and education study design for surgical technical skills training. Arch Surg. 2010;145(2):197–201. https://doi.org/10.1001/archsurg.2009.266.

    Article  PubMed  Google Scholar 

  16. Goldenberg M, Lee JY. Surgical education, simulation, and simulators-updating the concept of validity. Curr Urol Rep. 2018;19(7):52. https://doi.org/10.1007/s11934-018-0799-7.

    Article  PubMed  Google Scholar 

  17. Schout BM, Hendrikx AJ, Scheele F, Bemelmans BL, Scherpbier AJ. Validation and implementation of surgical simulators: a critical review of present, past, and future. Surg Endosc. 2010;24(3):536–46. https://doi.org/10.1007/s00464-009-0634-9.

    Article  CAS  PubMed  Google Scholar 

  18. Meller G. A typology of simulators for medical education. J Digit Imaging. 1997;10(3 Suppl 1):194–6. https://doi.org/10.1007/bf03168699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torkington J, Smith SG, Rees BI, Darzi A. The role of simulation in surgical training. Ann R Coll Surg Engl. 2000;82(2):88–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ziv A, Wolpe PR, Small SD, Glick S. Simulation-based medical education: an ethical imperative. Acad Med. 2003;78(8):783–8. https://doi.org/10.1097/00001888-200308000-00006.

    Article  PubMed  Google Scholar 

  21. Kneebone R. Simulation in surgical training: educational issues and practical implications. Med Educ. 2003;37(3):267–77. https://doi.org/10.1046/j.1365-2923.2003.01440.x.

    Article  PubMed  Google Scholar 

  22. Beaubien JM, Baker DP. The use of simulation for training teamwork skills in health care: how low can you go? Qual Saf Health Care. 2004;13(Suppl 1):i51. https://doi.org/10.1136/qhc.13.suppl_1.i51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cumin D, Merry AF. Simulators for use in anaesthesia. Anaesthesia. 2007;62(2):151–62. https://doi.org/10.1111/j.1365-2044.2006.04902.x.

    Article  CAS  PubMed  Google Scholar 

  24. Alinier G. A typology of educationally focused medical simulation tools. Med Teacher. 2007;29(8):e243–50. https://doi.org/10.1080/01421590701551185.

    Article  Google Scholar 

  25. Gallagher AG, Neary P, Gillen P, Lane B, Whelan A, Tanner WA, et al. Novel method for assessment and selection of trainees for higher surgical training in general surgery. ANZ J Surg. 2008;78(4):282–90. https://doi.org/10.1111/j.1445-2197.2008.04439.x.

    Article  PubMed  Google Scholar 

  26. Khan MS, Bann SD, Darzi AW, Butler PEM. Assessing surgical skill using bench station models. Plast Reconstr Surg. 2007;120(3):793–800. https://doi.org/10.1097/01.prs.0000271072.48594.fe.

    Article  CAS  PubMed  Google Scholar 

  27. Carroll SM, Kennedy AM, Traynor O, Gallagher AG. Objective assessment of surgical performance and its impact on a national selection programme of candidates for higher surgical training in plastic surgery. J Plast Reconstr Aesthet Surg. 2009;62(12):1543–9. https://doi.org/10.1016/j.bjps.2008.06.054.

    Article  PubMed  Google Scholar 

  28. Fernandez A, Chen E, Moore J, Cheung C, Erdeljan P, Fuller A, et al. A phantom model as a teaching modality for laparoscopic partial nephrectomy. J Endourol. 2012;26(1):1–5. https://doi.org/10.1089/end.2011.0131.

    Article  PubMed  Google Scholar 

  29. Tunitsky E, Murphy A, Barber MD, Simmons M, Jelovsek JE. Development and validation of a ureteral anastomosis simulation model for surgical training. Female Pelvic Med Reconstr Surg. 2013;19(6):346–51. https://doi.org/10.1097/SPV.0b013e3182a331bf.

    Article  PubMed  Google Scholar 

  30. Sabbagh R, Chatterjee S, Chawla A, Hoogenes J, Kapoor A, Matsumoto ED. Transfer of laparoscopic radical prostatectomy skills from bench model to animal model: a prospective, single-blind, randomized, controlled study. J Urol. 2012;187(5):1861–6. https://doi.org/10.1016/j.juro.2011.12.050.

    Article  PubMed  Google Scholar 

  31. Kailavasan M, Abdul-Rahman A, Hanchanale V, Rajpal S, Rogawski K, Palit V, et al. The validation of the clinical male pelvic trainer Mk 2-advanced models for scrotal examination simulation. J Surg Educ. 2017;74(3):423–30. https://doi.org/10.1016/j.jsurg.2016.10.008.

    Article  PubMed  Google Scholar 

  32. Singal A, Halverson A, Rooney DM, Davis LM, Kielb SJ. A validated low-cost training model for suprapubic catheter insertion. Urology. 2015;85(1):23–6. https://doi.org/10.1016/j.urology.2014.08.024.

    Article  PubMed  Google Scholar 

  33. Hossack T, Chris BB, Beer J, Thompson G. A cost-effective, easily reproducible, suprapubic catheter insertion simulation training model. Urology. 2013;82(4):955–8. https://doi.org/10.1016/j.urology.2013.06.013.

    Article  PubMed  Google Scholar 

  34. Shergill IS, Shaikh T, Arya M, Junaid I. A training model for suprapubic catheter insertion: the UroEmerge suprapubic catheter model. Urology. 2008;72(1):196–7. https://doi.org/10.1016/j.urology.2008.03.021.

    Article  PubMed  Google Scholar 

  35. Abdulmajed MI, Thomas M, Shergill IS. A new training model for adult circumcision. J Surg Educ. 2012;69(4):447–8. https://doi.org/10.1016/j.jsurg.2011.12.004.

    Article  PubMed  Google Scholar 

  36. Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113(5):836–42. https://doi.org/10.1111/bju.12559.

    Article  PubMed  Google Scholar 

  37. Soria F, Morcillo E, Serrano A, Cansino R, Rioja J, Fernandez I, et al. Development and validation of a novel skills training model for retrograde intrarenal surgery. J Endourol. 2015;29(11):1276–81. https://doi.org/10.1089/end.2015.0421.

    Article  PubMed  Google Scholar 

  38. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills: a randomized controlled study. J Urol. 2002;167(3):1243–7.

    Article  Google Scholar 

  39. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. A novel approach to endourological training: training at the Surgical Skills Center. J Urol. 2001;166(4):1261–6. https://doi.org/10.1016/s0022-5347(05)65749-7.

    Article  CAS  PubMed  Google Scholar 

  40. Brehmer M, Tolley D. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur Urol. 2002;42(2):175–9. https://doi.org/10.1016/s0302-2838(02)00265-8.

    Article  PubMed  Google Scholar 

  41. Brehmer M, Swartz R. Training on bench models improves dexterity in ureteroscopy. Eur Urol. 2005;48(3):458–63. https://doi.org/10.1016/j.eururo.2005.04.031.

    Article  PubMed  Google Scholar 

  42. Blankstein U, Lantz AG, RJ DAH, Pace KT, Ordon M, Lee JY. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. Can Urol Assoc J. 2015;9(9-10):331–5. https://doi.org/10.5489/cuaj.2811.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Soria F, Morcillo E, Sanz JL, Budia A, Serrano A, Sanchez-Margallo FM. Description and validation of realistic and structured endourology training model. Am J Clin Exp Urol. 2014;2(3):258–65.

    PubMed  PubMed Central  Google Scholar 

  44. Veneziano D, Ploumidis A, Proietti S, Tokas T, Kamphuis G, Tripepi G, et al. Validation of the endoscopic stone treatment step 1 (EST-s1): a novel EAU training and assessment tool for basic endoscopic stone treatment skills-a collaborative work by ESU. ESUT and EULIS. World J Urol. 2019;38(1):193–205. https://doi.org/10.1007/s00345-019-02736-4.

    Article  PubMed  Google Scholar 

  45. Veneziano D, Smith A, Reihsen T, Speich J, Sweet RM. The SimPORTAL fluoro-less C-arm trainer: an innovative device for percutaneous kidney access. J Endourol. 2015;29(2):240–5. https://doi.org/10.1089/end.2014.0401.

    Article  PubMed  Google Scholar 

  46. de Vries AH, van Genugten HG, Hendrikx AJ, Koldewijn EL, Schout BM, Tjiam IM, et al. The Simbla TURBT simulator in urological residency training: from needs analysis to validation. J Endourol. 2016;30(5):580–7. https://doi.org/10.1089/end.2015.0723.

    Article  PubMed  Google Scholar 

  47. Brewin J, Ahmed K, Khan MS, Jaye P, Dasgupta P. Face, content, and construct validation of the Bristol TURP trainer. J Surg Educ. 2014;71(4):500–5. https://doi.org/10.1016/j.jsurg.2014.01.013.

    Article  PubMed  Google Scholar 

  48. Aydin A, Ahmed K, Brewin J, Khan MS, Dasgupta P, Aho T. Face and content validation of the prostatic hyperplasia model and holmium laser surgery simulator. J Surg Educ. 2014;71(3):339–44. https://doi.org/10.1016/j.jsurg.2013.11.004.

    Article  PubMed  Google Scholar 

  49. Zhang Y, Ou TW, Jia JG, Gao W, Cui X, Wu JT, et al. Novel biologic model for percutaneous renal surgery learning and training in the laboratory. Urology. 2008;72(3):513–6. https://doi.org/10.1016/j.urology.2008.05.016.

    Article  PubMed  Google Scholar 

  50. Hammond L, Ketchum J, Schwartz BF. A new approach to urology training: a laboratory model for percutaneous nephrolithotomy. J Urol. 2004;172(5 Pt 1):1950–2. https://doi.org/10.1097/01.ju.0000140279.15186.20.

    Article  PubMed  Google Scholar 

  51. Grimsby GM, Andrews PE, Castle EP, Wolter CE, Patel BM, Humphreys MR. Urologic surgical simulation: an endoscopic bladder model. Simul Healthc. 2011;6(6):352–5. https://doi.org/10.1097/SIH.0b013e3182211096.

    Article  PubMed  Google Scholar 

  52. Molinas CR, Binda MM, Mailova K, Koninckx PR. The rabbit nephrectomy model for training in laparoscopic surgery. Human Reprod. 2004;19(1):185–90. https://doi.org/10.1093/humrep/deh025.

    Article  Google Scholar 

  53. Jiang C, Liu M, Chen J, Wang P, Lin T, Xu K, et al. Construct validity of the chicken crop model in the simulation of laparoscopic pyeloplasty. J Endourol. 2013;27(8):1032–6. https://doi.org/10.1089/end.2013.0085.

    Article  PubMed  Google Scholar 

  54. Laguna MP, Arce-Alcazar A, Mochtar CA, Van Velthoven R, Peltier A, de la Rosette JJ. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J Endourol. 2006;20(1):69–73. https://doi.org/10.1089/end.2006.20.69.

    Article  CAS  PubMed  Google Scholar 

  55. Yang RM, Bellman GC. Laparoscopic urethrovesical anastomosis: a model to assess surgical competency. J Endourol. 2006;20(9):679–82. https://doi.org/10.1089/end.2006.20.679.

    Article  PubMed  Google Scholar 

  56. Teber D, Guven S, Yaycioglu O, Ugurlu O, Sanli O, Gozen AS, et al. Single-knot running suture anastomosis (one-knot pyeloplasty) for laparoscopic dismembered pyeloplasty: training model on a porcine bladder and clinical results. Int Urol Nephrol. 2010;42(3):609–14. https://doi.org/10.1007/s11255-009-9668-0.

    Article  PubMed  Google Scholar 

  57. Boon JR, Salas N, Avila D, Boone TB, Lipshultz LI, Link RE. Construct validity of the pig intestine model in the simulation of laparoscopic urethrovesical anastomosis: tools for objective evaluation. J Endourol. 2008;22(12):2713–6. https://doi.org/10.1089/end.2008.0058.

    Article  PubMed  Google Scholar 

  58. Hung AJ, Ng CK, Patil MB, Zehnder P, Huang E, Aron M, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 2012;110(6):870–4. https://doi.org/10.1111/j.1464-410X.2012.10953.x.

    Article  PubMed  Google Scholar 

  59. Alemozaffar M, Narayanan R, Percy AA, Minnillo BB, Steinberg P, Haleblian G, et al. Validation of a novel, tissue-based simulator for robot-assisted radical prostatectomy. J Endourol. 2014;28(8):995–1000. https://doi.org/10.1089/end.2014.0041.

    Article  PubMed  Google Scholar 

  60. Royal Australasian College of Surgeons (RACS) Policies and Procedures; Anatomical specimens used for skills training. http://www.surgeons.org/media/16948/REL_SKC_6602_P_Anatomical_Specimens_Skills_Centre_Policy.pdf. Accessed 5 July 2011.

  61. Ahmed M, Meech JF, Timoney A. Virtual reality in medicine. Br J Urol. 1997;80(Suppl 3):46–52.

    PubMed  Google Scholar 

  62. Roscoe SN. Transfer and cost-effectiveness of ground based ̄ight trainers. In: Roscoe SN, editor. Aviation psychology. Ames: Iowa State University Press; 1980.

    Google Scholar 

  63. Stacey RL. Marketing medical simulation - what industry needs from the clinical community. Min Invas Ther Allied Technol. 2000;9:357–60.

    Article  Google Scholar 

  64. Schlectre TM, Bessemer DW, Kolosh KP. Computer based simulations systems and role-playing: an effective combination for fostering conditional knowledge. J Comput Based Instruct. 1992;19:110–4.

    Google Scholar 

  65. Gettman MT, Le CQ, Rangel LJ, Slezak JM, Bergstralh EJ, Krambeck AE. Analysis of a computer based simulator as an educational tool for cystoscopy: subjective and objective results. J Urol. 2008;179(1):267–71. https://doi.org/10.1016/j.juro.2007.08.146.

    Article  PubMed  Google Scholar 

  66. Gettman MT, Le CQ, Rangel LJ, Slezak JM, Bergstralh EJ, Krambeck AE. Development of a standardized curriculum for teaching cystoscopic skills using a computer-based endourologic simulator. Simul Healthc. 2009;4(2):92–7. https://doi.org/10.1097/SIH.0b013e3181871c3e.

    Article  PubMed  Google Scholar 

  67. Dolmans VE, Schout BM, de Beer NA, Bemelmans BL, Scherpbier AJ, Hendrikx AJ. The virtual reality endourologic simulator is realistic and useful for educational purposes. J Endourol. 2009;23(7):1175–81. https://doi.org/10.1089/end.2008.0487.

    Article  PubMed  Google Scholar 

  68. Shah J, Darzi A. Virtual reality flexible cystoscopy: a validation study. BJU Int. 2002;90(9):828–32. https://doi.org/10.1046/j.1464-410x.2002.03090.x.

    Article  CAS  PubMed  Google Scholar 

  69. Schout BM, Ananias HJ, Bemelmans BL, d’Ancona FC, Muijtjens AM, Dolmans VE, et al. Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int. 2010;106(2):226–31. https://doi.org/10.1111/j.1464-410X.2009.09049.x.

    Article  PubMed  Google Scholar 

  70. Schout BM, Muijtjens AM, Hendrikx AJ, Ananias HJ, Dolmans VE, Scherpbier AJ, et al. Acquisition of flexible cystoscopy skills on a virtual reality simulator by experts and novices. BJU Int. 2010;105(2):234–9. https://doi.org/10.1111/j.1464-410X.2009.08733.x.

    Article  PubMed  Google Scholar 

  71. Michel MS, Knoll T, Köhrmann KU, Alken P. The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU Int. 2002;89(3):174–7. https://doi.org/10.1046/j.1464-4096.2001.01644.x.

    Article  CAS  PubMed  Google Scholar 

  72. Watterson JD, Beiko DT, Kuan JK, Denstedt JD. Randomized prospective blinded study validating acquistion of ureteroscopy skills using computer based virtual reality endourological simulator. J Urol. 2002;168(5):1928–32. https://doi.org/10.1097/01.ju.0000034357.84449.56.

    Article  PubMed  Google Scholar 

  73. Wilhelm DM, Ogan K, Roehrborn CG, Cadeddu JA, Pearle MS. Assessment of basic endoscopic performance using a virtual reality simulator. J Am Coll Surg. 2002;195(5):675–81. https://doi.org/10.1016/s1072-7515(02)01346-7.

    Article  PubMed  Google Scholar 

  74. Jacomides L, Ogan K, Cadeddu JA, Pearle MS. Use of a virtual reality simulator for ureteroscopy training. J Urol. 2004;171(1):320–3. https://doi.org/10.1097/01.ju.0000101515.70623.4a.

    Article  PubMed  Google Scholar 

  75. Knoll T, Trojan L, Haecker A, Alken P, Michel MS. Validation of computer-based training in ureterorenoscopy. BJU Int. 2005;95(9):1276–9. https://doi.org/10.1111/j.1464-410X.2005.05518.x.

    Article  PubMed  Google Scholar 

  76. Chou DS, Abdelshehid C, Clayman RV, McDougall EM. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol. 2006;20(4):266–71. https://doi.org/10.1089/end.2006.20.266.

    Article  PubMed  Google Scholar 

  77. Knudsen BE, Matsumoto ED, Chew BH, Johnson B, Margulis V, Cadeddu JA, et al. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I. J Urol. 2006;176(5):2173–8. https://doi.org/10.1016/j.juro.2006.07.011.

    Article  PubMed  Google Scholar 

  78. Papatsoris AG, Shaikh T, Patel D, Bourdoumis A, Bach C, Buchholz N, et al. Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees. Urol Int. 2012;89(2):185–90. https://doi.org/10.1159/000337530.

    Article  CAS  PubMed  Google Scholar 

  79. Mishra S, Kurien A, Ganpule A, Muthu V, Sabnis R, Desai M. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model. BJU Int. 2010;106(11):1753–6. https://doi.org/10.1111/j.1464-410X.2010.09753.x.

    Article  PubMed  Google Scholar 

  80. Källström R, Hjertberg H, Kjölhede H, Svanvik J. Use of a virtual reality, real-time, simulation model for the training of urologists in transurethral resection of the prostate. Scand J Urol Nephrol. 2005;39(4):313–20. https://doi.org/10.1080/00365590510031246.

    Article  PubMed  Google Scholar 

  81. Källström R, Hjertberg H, Svanvik J. Construct validity of a full procedure, virtual reality, real-time, simulation model for training in transurethral resection of the prostate. J Endourol. 2010;24(1):109–15. https://doi.org/10.1089/end.2009.0114.

    Article  PubMed  Google Scholar 

  82. Rashid HH, Kowalewski T, Oppenheimer P, Ooms A, Krieger JN, Sweet RM. The virtual reality transurethral prostatic resection trainer: evaluation of discriminate validity. J Urol. 2007;177(6):2283–6. https://doi.org/10.1016/j.juro.2007.01.120.

    Article  PubMed  Google Scholar 

  83. Sweet R, Kowalewski T, Oppenheimer P, Weghorst S, Satava R. Face, content and construct validity of the University of Washington virtual reality transurethral prostate resection trainer. J Urol. 2004;172(5 Pt 1):1953–7. https://doi.org/10.1097/01.ju.0000141298.06350.4c.

    Article  CAS  PubMed  Google Scholar 

  84. Hudak SJ, Landt CL, Hernandez J, Soderdahl DW. External validation of a virtual reality transurethral resection of the prostate simulator. J Urol. 2010;184(5):2018–22. https://doi.org/10.1016/j.juro.2010.06.141.

    Article  PubMed  Google Scholar 

  85. Bright E, Vine S, Wilson MR, Masters RS, McGrath JS. Face validity, construct validity and training benefits of a virtual reality TURP simulator. Int J Surg. 2012;10(3):163–6. https://doi.org/10.1016/j.ijsu.2012.02.012.

    Article  PubMed  Google Scholar 

  86. Kishore TA, Beddingfield R, Holden T, Shen Y, Reihsen T, Sweet RM. Task deconstruction facilitates acquisition of transurethral resection of prostate skills on a virtual reality trainer. J Endourol. 2009;23(4):665–8. https://doi.org/10.1089/end.2008.0531.

    Article  PubMed  Google Scholar 

  87. Kuronen-Stewart C, Ahmed K, Aydin A, Cynk M, Miller P, Challacombe B, et al. Holmium laser enucleation of the prostate: simulation-based training curriculum and validation. Urology. 2015;86(3):639–46. https://doi.org/10.1016/j.urology.2015.06.008.

    Article  PubMed  Google Scholar 

  88. Angulo JC, Arance I, García-Tello A, Las Heras MM, Andrés G, Gimbernat H, et al. Virtual reality simulator for training on photoselective vaporization of the prostate with 980 nm diode laser and learning curve of the technique. Actas Urol Esp. 2014;38(7):451–8. https://doi.org/10.1016/j.acuro.2014.02.013.

    Article  CAS  PubMed  Google Scholar 

  89. Saredi G, Pirola GM, Pacchetti A, Lovisolo JA, Borroni G, Sembenini F, et al. Evaluation of the learning curve for thulium laser enucleation of the prostate with the aid of a simulator tool but without tutoring: comparison of two surgeons with different levels of endoscopic experience. BMC Urol. 2015;15:49. https://doi.org/10.1186/s12894-015-0045-2.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Herlemann A, Strittmatter F, Buchner A, Karl A, Reich O, Bachmann A, et al. Virtual reality systems in urologic surgery: an evaluation of the GreenLight simulator. Eur Urol. 2013;64(4):687–8. https://doi.org/10.1016/j.eururo.2013.06.008.

    Article  PubMed  Google Scholar 

  91. Aydin A, Muir GH, Graziano ME, Khan MS, Dasgupta P, Ahmed K. Validation of the GreenLight™ simulator and development of a training curriculum for photoselective vaporisation of the prostate. BJU Int. 2015;115(6):994–1003. https://doi.org/10.1111/bju.12842.

    Article  PubMed  Google Scholar 

  92. Berridge C, Kailavasan M, Athanasiadis G, Gkentzis A, Tassadaq T, Palit V, et al. Endoscopic surgical simulation using low-fidelity and virtual reality transurethral resection simulators in urology simulation boot camp course: trainees feedback assessment study. World J Urol. 2021;39(8):3103–7. https://doi.org/10.1007/s00345-020-03559-4.

    Article  PubMed  Google Scholar 

  93. Brewin J, Nedas T, Challacombe B, Elhage O, Keisu J, Dasgupta P. Face, content and construct validation of the first virtual reality laparoscopic nephrectomy simulator. BJU Int. 2010;106(6):850–4. https://doi.org/10.1111/j.1464-410X.2009.09193.x.

    Article  PubMed  Google Scholar 

  94. Hung AJ, Zehnder P, Patil MB, Cai J, Ng CK, Aron M, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186(3):1019–24. https://doi.org/10.1016/j.juro.2011.04.064.

    Article  PubMed  Google Scholar 

  95. Liss MA, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, et al. Validation, correlation, and comparison of the da Vinci trainer(™) and the daVinci surgical skills simulator(™) using the Mimic(™) software for urologic robotic surgical education. J Endourol. 2012;26(12):1629–34. https://doi.org/10.1089/end.2012.0328.

    Article  PubMed  Google Scholar 

  96. Alzahrani T, Haddad R, Alkhayal A, Delisle J, Drudi L, Gotlieb W, et al. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc J. 2013;7(7–8):E520–9. https://doi.org/10.5489/cuaj.419.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kelly DC, Margules AC, Kundavaram CR, Narins H, Gomella LG, Trabulsi EJ, et al. Face, content, and construct validation of the da Vinci Skills simulator. Urology. 2012;79(5):1068–72. https://doi.org/10.1016/j.urology.2012.01.028.

    Article  PubMed  Google Scholar 

  98. Lyons C, Goldfarb D, Jones SL, Badhiwala N, Miles B, Link R, et al. Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc. 2013;27(6):2020–30. https://doi.org/10.1007/s00464-012-2704-7.

    Article  PubMed  Google Scholar 

  99. Connolly M, Seligman J, Kastenmeier A, Goldblatt M, Gould JC. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. 2014;28(5):1691–4. https://doi.org/10.1007/s00464-013-3373-x.

    Article  PubMed  Google Scholar 

  100. Lendvay TS, Casale P, Sweet R, Peters C. Initial validation of a virtual-reality robotic simulator. J Robot Surg. 2008;2(3):145–9. https://doi.org/10.1007/s11701-008-0099-1.

    Article  PubMed  Google Scholar 

  101. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92. https://doi.org/10.1016/j.urology.2008.12.044.

    Article  PubMed  Google Scholar 

  102. Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23(3):503–8. https://doi.org/10.1089/end.2008.0250.

    Article  PubMed  Google Scholar 

  103. Korets R, Mues AC, Graversen JA, Gupta M, Benson MC, Cooper KL, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78(6):1326–30. https://doi.org/10.1016/j.urology.2011.07.1426.

    Article  PubMed  Google Scholar 

  104. Lee JY, Mucksavage P, Kerbl DC, Huynh VB, Etafy M, McDougall EM. Validation study of a virtual reality robotic simulator – role as an assessment tool? J Urol. 2012;187(3):998–1002. https://doi.org/10.1016/j.juro.2011.10.160.

    Article  PubMed  Google Scholar 

  105. Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J, Bresler L, et al. The virtual reality simulator dV-Trainer(®) is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93. https://doi.org/10.1007/s00464-012-2237-0.

    Article  PubMed  Google Scholar 

  106. Schreuder HW, Persson JE, Wolswijk RG, Ihse I, Schijven MP, Verheijen RH. Validation of a novel virtual reality simulator for robotic surgery. Sci World J. 2014;2014:507076. https://doi.org/10.1155/2014/507076.

    Article  Google Scholar 

  107. Kang SG, Cho S, Kang SH, Haidar AM, Samavedi S, Palmer KJ, et al. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84(2):345–50. https://doi.org/10.1016/j.urology.2014.05.005.

    Article  PubMed  Google Scholar 

  108. Cho JS, Hahn KY, Kwak JM, Kim J, Baek SJ, Shin JW, et al. Virtual reality training improves da Vinci performance: a prospective trial. J Laparoendosc Adv Surg Tech A. 2013;23(12):992–8. https://doi.org/10.1089/lap.2012.0396.

    Article  PubMed  Google Scholar 

  109. Johnston R, Bhoyrul S, Way L, Satava R, McGovern K, Fletcher JD, et al. Assessing a virtual reality surgical skills simulator. Stud Health Technol Inform. 1996;29:608–17.

    CAS  PubMed  Google Scholar 

  110. Playter R, Raibert M. A virtual reality surgery simulator using advanced haptic feedback. Minim Invasive Ther Allied Technol. 1997;6:117–21.

    Article  Google Scholar 

  111. Tang SL, Kwoh CK, Teo MY, Sing NW, Ling KV. Augmented reality systems for medical applications. IEEE Eng Med Biol Mag. 1998;17(3):49–58. https://doi.org/10.1109/51.677169.

    Article  CAS  PubMed  Google Scholar 

  112. Bertolo R, Hung A, Porpiglia F, Bove P, Schleicher M, Dasgupta P. Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come. World J Urol. 2020;38(9):2167–76. https://doi.org/10.1007/s00345-019-02711-z.

    Article  PubMed  Google Scholar 

  113. Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. 2010;76(2):357–60. https://doi.org/10.1016/j.urology.2009.11.069.

    Article  PubMed  Google Scholar 

  114. Seixas-Mikelus SA, Stegemann AP, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, et al. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107(7):1130–5. https://doi.org/10.1111/j.1464-410X.2010.09694.x.

    Article  PubMed  Google Scholar 

  115. Chowriappa AJ, Shi Y, Raza SJ, Ahmed K, Stegemann A, Wilding G, et al. Development and validation of a composite scoring system for robot-assisted surgical training – the Robotic Skills Assessment Score. J Surg Res. 2013;185(2):561–9. https://doi.org/10.1016/j.jss.2013.06.054.

    Article  PubMed  Google Scholar 

  116. Raza SJ, Froghi S, Chowriappa A, Ahmed K, Field E, Stegemann AP, et al. Construct validation of the key components of Fundamental Skills of Robotic Surgery (FSRS) curriculum: a multi-institution prospective study. J Surg Educ. 2014;71(3):316–24. https://doi.org/10.1016/j.jsurg.2013.10.006.

    Article  PubMed  Google Scholar 

  117. Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194(2):520–6. https://doi.org/10.1016/j.juro.2015.02.2949.

    Article  PubMed  Google Scholar 

  118. Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115(2):336–45. https://doi.org/10.1111/bju.12704.

    Article  PubMed  Google Scholar 

  119. Health Insurance Portability and Accountability Act. http://whatishipaa.org/

  120. Nuland SB. Doctors: the biography of medicine. New York: Vintage Books; 1988.

    Google Scholar 

  121. Coulehan JL, Williams PC, Landis D, Naser C. The first patient: reflections and stories about the anatomy cadaver. Teach Learn Med. 1995;7(1):61–6.

    Article  Google Scholar 

  122. Ellis H. Teaching in the dissecting room. Clin Anat. 2001;14(2):149–51. https://doi.org/10.1002/1098-2353(200103)14:2<149::Aid-ca1023>3.0.Co;2-u.

    Article  CAS  PubMed  Google Scholar 

  123. Mutyala S, Cahill DR. Catching up. Clin Anat. 1996;9(1):53–6. https://doi.org/10.1002/(sici)1098-2353(1996)9:1<53::Aid-ca11>3.0.Co;2-9.

    Article  CAS  PubMed  Google Scholar 

  124. Aziz MA, McKenzie JC, Wilson JS, Cowie RJ, Ayeni SA, Dunn BK. The human cadaver in the age of biomedical informatics. Anat Rec. 2002;269(1):20–32. https://doi.org/10.1002/ar.10046.

    Article  PubMed  Google Scholar 

  125. Cosman P, Hemli JM, Ellis AM, Hugh TJ. Learning the surgical craft: a review of skills training options. ANZ J Surg. 2007;77(10):838–45. https://doi.org/10.1111/j.1445-2197.2007.04254.x.

    Article  PubMed  Google Scholar 

  126. Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72(4):556–65. https://doi.org/10.1016/j.jsurg.2015.01.005.

    Article  PubMed  Google Scholar 

  127. Levine RL, Kives S, Cathey G, Blinchevsky A, Acland R, Thompson C, et al. The use of lightly embalmed (fresh tissue) cadavers for resident laparoscopic training. J Minim Invasive Gynecol. 2006;13(5):451–6. https://doi.org/10.1016/j.jmig.2006.06.011.

    Article  PubMed  Google Scholar 

  128. Sharma M, Macafee D, Pranesh N, Horgan AF. Construct validity of fresh frozen human cadaver as a training model in minimal access surgery. JSLS. 2012;16(3):345–52. https://doi.org/10.4293/108680812x13462882735818.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Huri E, Skolarikos A, Tatar İ, Binbay M, Sofikerim M, Yuruk E, et al. Simulation of RIRS in soft cadavers: a novel training model by the Cadaveric Research On Endourology Training (CRET) Study Group. World J Urol. 2016;34(5):741–6. https://doi.org/10.1007/s00345-015-1676-3.

    Article  PubMed  Google Scholar 

  130. Volpe A, Ahmed K, Dasgupta P, Ficarra V, Novara G, van der Poel H, et al. Pilot validation study of the European Association of Urology Robotic Training Curriculum. Eur Urol. 2015;68(2):292–9. https://doi.org/10.1016/j.eururo.2014.10.025.

    Article  PubMed  Google Scholar 

  131. Thiel W. The preservation of the whole corpse with natural color. Ann Anat. 1992;174(3):185–95.

    Article  CAS  Google Scholar 

  132. Thiel W. Supplement to the conservation of an entire cadaver according to W. Thiel. Ann Anat. 2002;184(3):267–9. https://doi.org/10.1016/s0940-9602(02)80121-2.

    Article  PubMed  Google Scholar 

  133. Groscurth P, Eggli P, Kapfhammer J, Rager G, Hornung JP, Fasel JD. Gross anatomy in the surgical curriculum in Switzerland: improved cadaver preservation, anatomical models, and course development. Anat Rec. 2001;265(6):254–6. https://doi.org/10.1002/ar.10030.

    Article  CAS  PubMed  Google Scholar 

  134. Yiasemidou M, Roberts D, Glassman D, Tomlinson J, Biyani CS, Miskovic D. A multispecialty evaluation of Thiel Cadavers for surgical training: reply. World J Surg. 2017;41(12):3230–1. https://doi.org/10.1007/s00268-017-4251-9.

    Article  PubMed  Google Scholar 

  135. Hölzle F, Franz EP, Lehmbrock J, Weihe S, Teistra C, Deppe H, et al. Thiel embalming technique: a valuable method for teaching oral surgery and implantology. Clin Implant Dent Relat Res. 2012;14(1):121–6. https://doi.org/10.1111/j.1708-8208.2009.00230.x.

    Article  PubMed  Google Scholar 

  136. Giger U, Frésard I, Häfliger A, Bergmann M, Krähenbühl L. Laparoscopic training on Thiel human cadavers: a model to teach advanced laparoscopic procedures. Surg Endosc. 2008;22(4):901–6. https://doi.org/10.1007/s00464-007-9502-7.

    Article  PubMed  Google Scholar 

  137. Wolff KD, Kesting M, Mücke T, Rau A, Hölzle F. Thiel embalming technique: a valuable method for microvascular exercise and teaching of flap raising. Microsurgery. 2008;28(4):273–8. https://doi.org/10.1002/micr.20484.

    Article  PubMed  Google Scholar 

  138. Benkhadra M, Gérard J, Genelot D, Trouilloud P, Girard C, Anderhuber F, et al. Is Thiel’s embalming method widely known? A world survey about its use. Surg Radiol Anat. 2011;33(4):359–63. https://doi.org/10.1007/s00276-010-0705-6.

    Article  PubMed  Google Scholar 

  139. Pattanshetti VM, Pattanshetti SV. Laparoscopic surgery on cadavers: a novel teaching tool for surgical residents. ANZ J Surg. 2010;80(10):676–8. https://doi.org/10.1111/j.1445-2197.2010.05454.x.

    Article  PubMed  Google Scholar 

  140. Cabello R, González C, Quicios C, Bueno G, García JV, Arribas AB, et al. An experimental model for training in renal transplantation surgery with human cadavers preserved using W. Thiel’s embalming technique. J Surg Educ. 2015;72(2):192–7. https://doi.org/10.1016/j.jsurg.2014.10.002.

    Article  PubMed  Google Scholar 

  141. Healy SE, Rai BP, Biyani CS, Eisma R, Soames RW, Nabi G. Thiel embalming method for cadaver preservation: a review of new training model for urologic skills training. Urology. 2015;85(3):499–504. https://doi.org/10.1016/j.urology.2014.11.009.

    Article  PubMed  Google Scholar 

  142. Hull CW. Apparatus for production of three-dimensional objects by stereolithography Google Patents. 1986.

    Google Scholar 

  143. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61. https://doi.org/10.1136/bjophthalmol-2013-304446.

    Article  PubMed  Google Scholar 

  144. Soliman Y, Feibus AH, Baum N. 3D printing and its urologic applications. Rev Urol. 2015;17(1):20–4.

    PubMed  PubMed Central  Google Scholar 

  145. Youssef RF, Spradling K, Yoon R, Dolan B, Chamberlin J, Okhunov Z, et al. Applications of three-dimensional printing technology in urological practice. BJU Int. 2015;116(5):697–702. https://doi.org/10.1111/bju.13183.

    Article  PubMed  Google Scholar 

  146. Wake N, Chandarana H, Huang WC, Taneja SS, Rosenkrantz AB. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin Radiol. 2016;71(6):610–4. https://doi.org/10.1016/j.crad.2016.02.012.

    Article  CAS  PubMed  Google Scholar 

  147. Golab A, Smektala T, Kaczmarek K, Stamirowski R, Hrab M, Slojewski M. Laparoscopic partial nephrectomy supported by training involving personalized silicone replica poured in three-dimensional printed casting mold. J Laparoendosc Adv Surg Tech A. 2017;27(4):420–2. https://doi.org/10.1089/lap.2016.0596.

    Article  PubMed  Google Scholar 

  148. Atalay HA, Canat HL, Ülker V, Alkan İ, Özkuvanci Ü, Altunrende F. Impact of personalized three-dimensional-3D-printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol. 2017;43(3):470–5. https://doi.org/10.1590/s1677-5538.Ibju.2016.0441.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A, Stone J, et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 2017;31(12):1314–20. https://doi.org/10.1089/end.2017.0366.

    Article  PubMed  Google Scholar 

  150. Cacciamani GE, Okhunov Z, Meneses AD, Rodriguez-Socarras ME, Rivas JG, Porpiglia F, et al. Impact of three-dimensional printing in urology: state of the art and future perspectives. a systematic review by ESUT-YAUWP group. Eur Urol. 2019;76(2):209–21. https://doi.org/10.1016/j.eururo.2019.04.044.

    Article  PubMed  Google Scholar 

  151. Gaba DM, DeAnda A. A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology. 1988;69(3):387–94.

    Article  CAS  Google Scholar 

  152. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003-2009. Med Educ. 2010;44(1):50–63. https://doi.org/10.1111/j.1365-2923.2009.03547.x.

    Article  PubMed  Google Scholar 

  153. Schmidt E, Goldhaber-Fiebert SN, Ho LA, McDonald KM. Simulation exercises as a patient safety strategy: a systematic review. Ann Intern Med. 2013;158(5 Pt 2):426–32. https://doi.org/10.7326/0003-4819-158-5-201303051-00010.

    Article  PubMed  Google Scholar 

  154. Zendejas B, Brydges R, Wang AT, Cook DA. Patient outcomes in simulation-based medical education: a systematic review. J Gen Intern Med. 2013;28(8):1078–89. https://doi.org/10.1007/s11606-012-2264-5.

    Article  PubMed  PubMed Central  Google Scholar 

  155. LeBlanc VR, Manser T, Weinger MB, Musson D, Kutzin J, Howard SK. The study of factors affecting human and systems performance in healthcare using simulation. Simul Healthc. 2011;6(Suppl):S24–9. https://doi.org/10.1097/SIH.0b013e318229f5c8.

    Article  PubMed  Google Scholar 

  156. Vardi A, Berkenstadt H, Levin I, Bentencur A, Ziv A. Intraosseous vascular access in the treatment of chemical warfare casualties assessed by advanced simulation: proposed alteration of treatment protocol. Anesth Analg. 2004;98(6):1753–8. https://doi.org/10.1213/01.ane.0000104482.11585.03.

    Article  PubMed  Google Scholar 

  157. Gaba DM, Howard SK, Flanagan B, Smith BE, Fish KJ, Botney R. Assessment of clinical performance during simulated crises using both technical and behavioral ratings. Anesthesiology. 1998;89(1):8–18. https://doi.org/10.1097/00000542-199807000-00005.

    Article  CAS  PubMed  Google Scholar 

  158. Wright MC, Segall N, Hobbs G, Phillips-Bute B, Maynard L, Taekman JM. Standardized assessment for evaluation of team skills: validity and feasibility. Simul Healthc. 2013;8(5):292–303. https://doi.org/10.1097/SIH.0b013e318290a022.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Fletcher G, Flin R, McGeorge P, Glavin R, Maran N, Patey R. Anaesthetists’ Non-Technical Skills (ANTS): evaluation of a behavioural marker system. Br J Anaesth. 2003;90(5):580–8. https://doi.org/10.1093/bja/aeg112.

    Article  CAS  PubMed  Google Scholar 

  160. Yule S, Flin R, Maran N, Rowley D, Youngson G, Paterson-Brown S. Surgeons’ non-technical skills in the operating room: reliability testing of the NOTSS behavior rating system. World J Surg. 2008;32(4):548–56. https://doi.org/10.1007/s00268-007-9320-z.

    Article  PubMed  Google Scholar 

  161. Ounounou E, Aydin A, Brunckhorst O, Khan MS, Dasgupta P, Ahmed K. Nontechnical skills in surgery: a systematic review of current training modalities. J Surg Educ. 2019;76(1):14–24. https://doi.org/10.1016/j.jsurg.2018.05.017.

    Article  PubMed  Google Scholar 

  162. Howard SK, Gaba DM, Smith BE, Weinger MB, Herndon C, Keshavacharya S, et al. Simulation study of rested versus sleep-deprived anesthesiologists. Anesthesiology. 2003;98(6):1345–55. https://doi.org/10.1097/00000542-200306000-00008.

    Article  PubMed  Google Scholar 

  163. Merry AF, Weller JM, Robinson BJ, Warman GR, Davies E, Shaw J, et al. A simulation design for research evaluating safety innovations in anaesthesia. Anaesthesia. 2008;63(12):1349–57. https://doi.org/10.1111/j.1365-2044.2008.05638.x.

    Article  CAS  PubMed  Google Scholar 

  164. Hamman WR, Beaudin-Seiler BM, Beaubien JM, Gullickson AM, Orizondo-Korotko K, Gross AC, et al. Using in situ simulation to identify and resolve latent environmental threats to patient safety: case study involving operational changes in a labor and delivery ward. Qual Manag Health Care. 2010;19(3):226–30. https://doi.org/10.1097/QMH.0b013e3181eb1452.

    Article  PubMed  Google Scholar 

  165. Littlewood KE. High fidelity simulation as a research tool. Best Pract Res Clin Anaesthesiol. 2011;25(4):473–87. https://doi.org/10.1016/j.bpa.2011.08.001.

    Article  PubMed  Google Scholar 

  166. Nestel D, Clark S, Tabak D, Ashwell V, Muir E, Paraskevas P, et al. Defining responsibilities of simulated patients in medical education. Simul Healthc. 2010;5(3):161–8. https://doi.org/10.1097/SIH.0b013e3181de1cb6.

    Article  PubMed  Google Scholar 

  167. Dieckmann P, Phero JC, Issenberg SB, Kardong-Edgren S, Ostergaard D, Ringsted C. The first Research Consensus Summit of the Society for Simulation in Healthcare: conduction and a synthesis of the results. Simul Healthc. 2011;6(Suppl):S1–9. https://doi.org/10.1097/SIH.0b013e31822238fc.

    Article  PubMed  Google Scholar 

  168. Leuschner S, Leuschner M, Kropf S, Niederbichler AD. Non-technical skills training in the operating theatre: a meta-analysis of patient outcomes. Surgeon. 2019;17(4):233–43. https://doi.org/10.1016/j.surge.2018.07.001.

    Article  PubMed  Google Scholar 

  169. Somasundram K, Spence H, Colquhoun AJ, McIlhenny C, Biyani CS, Jain S. Simulation in urology to train non-technical skills in ward rounds. BJU Int. 2018;122(4):705–12. https://doi.org/10.1111/bju.14402.

    Article  PubMed  Google Scholar 

  170. Spence H, Somasundram K, Biyani CS, Jain S. Training nontechnical skills in ward rounds to improve team performance. J Surg Educ. 2020;77(4):921–30. https://doi.org/10.1016/j.jsurg.2020.02.012.

    Article  PubMed  Google Scholar 

  171. Brunckhorst O, Shahid S, Aydin A, Khan S, McIlhenny C, Brewin J, et al. The Relationship Between Technical And nontechnical skills within a simulation-based ureteroscopy training environment. J Surg Educ. 2015;72(5):1039–44. https://doi.org/10.1016/j.jsurg.2015.04.002.

    Article  PubMed  Google Scholar 

  172. Brewin J, Tang J, Dasgupta P, Khan MS, Ahmed K, Bello F, et al. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology. BJU Int. 2015;116(1):156–62. https://doi.org/10.1111/bju.12875.

    Article  PubMed  Google Scholar 

  173. Abdelshehid CS, Quach S, Nelson C, Graversen J, Lusch A, Zarraga J, et al. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy. J Surg Educ. 2013;70(5):588–95. https://doi.org/10.1016/j.jsurg.2013.04.009.

    Article  PubMed  Google Scholar 

  174. Lee JY, Mucksavage P, Canales C, McDougall EM, Lin S. High fidelity simulation based team training in urology: a preliminary interdisciplinary study of technical and nontechnical skills in laparoscopic complications management. J Urol. 2012;187(4):1385–91. https://doi.org/10.1016/j.juro.2011.11.106.

    Article  PubMed  Google Scholar 

  175. Gettman MT, Pereira CW, Lipsky K, Wilson T, Arnold JJ, Leibovich BC, et al. Use of high fidelity operating room simulation to assess and teach communication, teamwork and laparoscopic skills: initial experience. J Urol. 2009;181(3):1289–96. https://doi.org/10.1016/j.juro.2008.11.018.

    Article  PubMed  Google Scholar 

  176. Kwong JC, Lee JY, Goldenberg MG. Understanding and assessing nontechnical skills in robotic urological surgery: a systematic review and synthesis of the validity evidence. J Surg Educ. 2019;76(1):193–200. https://doi.org/10.1016/j.jsurg.2018.05.009.

    Article  PubMed  Google Scholar 

  177. Choi W, Dyens O, Chan T, Schijven M, Lajoie S, Mancini M, Dev P, Fellander-Tsai L, Ferland M, Kato P, Lau J, Montonaro M, Pineau J, Aggarwal R. Engagement and learning in simulation: recommendations of the Simnovate Engaged Learning Domain Group. BMJ Simul Technol Enhanced Learn. 2017;3:S23–32.

    Article  Google Scholar 

  178. Noel D, Stover S, McNutt M. Student perceptions of engagement using mobile-based polling as an audience response system: implications for leadership studies. J Leadership Educ. 2015;14(3):53–70. https://doi.org/10.12806/V14/I3/R4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tokas, T., Biyani, C.S., Gözen, A.S. (2022). Procedural Training Simulators. In: Biyani, C.S., Van Cleynenbreugel, B., Mottrie, A. (eds) Practical Simulation in Urology . Springer, Cham. https://doi.org/10.1007/978-3-030-88789-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88789-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88788-9

  • Online ISBN: 978-3-030-88789-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics